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Anomalous diffusion, solutions, and first passage time: Influence of diffusion coefficient

Kwok Sau Fa and E. K. Lenzi
Departamento de Fisica, Universidade Estadual de Maringa, Avenida Colombo 5790, 87020-900, Maringa-PR, Brazil
(Received 20 September 2004; published 20 January)2005

We investigate the solutions and the first passage time for anomalous diffusion processes governed by the
usual diffusion equation. We consider a space- and time-dependent diffusion coefficient and the presence of
absorbing boundaries. We obtain analytical results for the probability distribution and the first passage time
distribution for finite and semi-infinite intervals. In addition, we compare our results for the first passage time
distribution with the one obtained by the usual diffusion equation with constant diffusion coefficient.
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I. INTRODUCTION these processes with different forms ®(t). In Sec. IIl, we
Anomalous diffusion is a ubiquitous phenomenon in na-nvestigate Eq.(1) subjected to the boundary condition

ture and it appears in several contexts related to physicﬁ(o’t)zp(L’t)zo, and the initial cond.|t|0rp(x,0):p(x).'\'Ne' )
chemistry, and biology. The processes associated witﬁ'so anquze this result by extending it to a seml-ln_flm_te
anomalous diffusion are investigated, in general, by using thiterval, i.e.L — . Furthermore, we analyze the FPT distri-
Langevin equation or differential equations for the probabil-Pution and the MFPT. Next in Sec. IV, we present our con-
ity densityp(x,t). Nowadays, there are several approaches &USion by giving a discussion about our results.
our disposal to describe these processes. For instance, the
well-known cases are the Langevin equation and the corre- IIl. DIFFUSION EQUATION WITH NATURAL
sponding Fokker-Planck equation, and the master equation. BOUNDARY CONDITIONS
The other ones we could mention are the generalized Lange-
vin equations[1], the generalized Fokker-Planck equation The diffusion equatior{l) with variable diffusion coeffi-
with memory effect[2], generalized thermostatistid8],  cient in space and/or in time has been considered by several
generalized master equatiofd], continuous time random authors. Richardson considered, by empirical argument, the
walk models[5], and fractional equatiori$]. In connection  spatial diffusion coefficient given bp(t,x)~ |x|~¢ (with 6
to these approaches, the investigation of a stochastic process-4/3) in order to study turbulent diffusivity10], whereas
such as anomalous diffusion, is also associated with thgatchelor suggeste®(t,x) ~t? for the same problerfil4].
mean first passage tint®FPT). The MFPT is defined as the |n a later step, OkubfL5] and Hentschel and Procacgis)
time 7when a process, starting from a given point, reaches goHp) suggested mixed algebraic forms given Byt,x)
predetermined level for the first time. Examples of the MFPT talx|~, with the initial conditionp(0,x) = 8(x). The solution
are the escape time from a random potential, intervals bess g (1) for D(t,r)=KD(t)r, in n dimensions with spheri-
tween neural spikefr], and fatigue failurdg8]. In this con- symmetry, is given by
text, the knowledge of the first passage titR€®T) distribu- '

tion F(t) is also essential. However, in only a few cases one 54 1 (2+0)

has explicit analytical expressions for the FPT distribution, (= (2+6) { } g2 0%
as was pointed out in Ref. 9. In this direction, our focus on nC(n/(2+6) | K2+ 6%

this work is to analyze the MFPT, the FPT distribution, and )

the solutions related to the following diffusion equation:

wheret=[D(t)dt. The corresponding mean squared displace-
ment is(r2) ~t2(2*9 Note that the non-Gaussian solution of

e - . . Eq. (2) is due to the spatial diffusion coefficient. In particu-
o . 1 e aichelr =), e probabity
NG wEqll) particular tion has the Gaussian form. FD(t)=t* we recover the OHP
situations present in the literature and it brings further as- . g -3(L+8)/(2+6) o~Cor2 Ot a

pects to explore, for example, physical systems whose dys0!ution which y'el_dSp(r’t)“t A ? - In par-
namic aspects are governed by fractal-like structure and noficular, for 2a=30=4 one has(r)~t> which leads to the

Markovian processes. The above equation has been app“ééme behavior of the Richardson and Bat_Che|0_r models. Qne
to investigate turbu'encélo,l:u, fast electrons in a hot can see that the above three models are linear in the Ioga”th'

plasma in the presence of a dc electric figl@], and diffu- mic scale. To deviate from the linear behavior one can con-

sion on fractal§13]. sider, for exampleD(t) ~d[(1 +at®)¢/ (1 +gt%)"]/dt. For this
The plan of this work is to investigate E€L). In Sec. Il,  last case{r? is shown in Fig. 1. Fot small(r?) is domi-

we present the solutions of El) with natural boundary nated by the initial distance, and for large time the rate of

conditions and diffusion coefficient given byD(t,x)  (r? is less than that of the intermediate time. These behav-

=D(t)|x"%. We analyze the mean squared displacement oiors seem to be verified in turbulent procesgks.

J J J
St = E{D(t,X)a—Xp(x,t)} : &)
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FIG. 1. Plot of{r?) as a function of, in arbitrary units, with the FIG. 2. We show the behavior ¢%%) versust, in arbitrary units,

diffusion coefficientD(r ,t) ~r=?d[(1+at®)¢/ (1 +gt%)"]/dt. The pa-  for typical values of¢ by using, for simplicity,x,=3, L=6, and
rameters ar@=0.4,b=2.3, 2/(2+6)=1.36,9=7.7x 108, q=5.4, D=1

+60)=0.33. . . . . "
and 2/(2+6)=0.33 tion associated with the initial condition arg, are deter-

mined by the equationd.gya+g{[2N/(2+6)]LZ+2=0,
lll. DIFFUSION EQUATION AND FPT DISTRIBUTION i.e., they correspond to the zeros of the Bessel function. No-

We start this section by regarding a particle diffusing in anfice that the presence of the Bessel functions in(Blis due
interval[0,L], whose dynamics is governed by Ed), sub-  {© the spatial dependence of the diffusion coefficient. In par-
ject to absorbing boundaries, i.¢(0,t)=p(L,t)=0 and the ticular, this difference between E(B) and the standard so-
initial condition given by p(x ’0) :—();) It is’interesting to lution with constant diffusion coefficient is related to the
note that this kind of boupnd:':lr é)ondition may be useful tochanges. obt_alned for the probability Of- ajump Ienth.due 0
; . o y y the spatial time dependence of the diffusion coefficient. In
investigate stratified porous medi&7] and to model photo- eyt show the differences between the standard case and

conductivity in the amorphous semiconductop®& and the  this case we may analyze the second moment obtained from
organic compound TNF-P18]. In order to solve Eq(l),  Eq.(3). It is given by

subject to the conditions indicated above, the resolution (2 + ) M2+0) 2 {1+02
method employed here is just the Green function method o) =
[19]. Thus, the solution obtained for E(L) is given by 3420
L _ (4+0r
p(th) - 0 dXOg(X!XOlt)p(XO)r 2 + 6
2\, . 2\p )
(xgx) 102 Jtepi2e0) X242 \(L0(2+0) Jeanizen) _X(()2+a) 2
0+2 > 2+6 ® 2+6
G(x,Xit) = —— 2 . X2 .
L0+2 n=1 2)\n n=1 2)\n s
Jas20i2+| —— L2 J(z+20)1(2+6) L@+
2+40 2+6
2\, t 4+6 3+20 6+20 —L2\2
X Jeayamg| — X0 eXp(“ )\ﬁf dt’D(t/)> X1F> ; , ;
2+6 0 2460 2+60 2+6 (2+6)
3) [
xXexp =\, [ dtD(t) (4)
for an arbitrary initial condition, wher§ is the Green func- 0
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FIG. 3. We show the behavior ¢f(t) versud, in arbitrary units,
for typical values ofé by using, for simplicity,x,=3, L=6, and

D()=1.

for the initial

condition  p(x,0)=8(X—Xp),
1Folaq; B1,B2:X) is a hypergeometric functiofi20]. Note

where
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2.0

FIG. 4. We show the behavior ¢f(t) versug, in arbitrary units,
for typical values ofé by considering, for simplicityx,=1 and
D=1.

that the above equation can exhibit several kinds of behav-

iors depending on the choices fBx(t) and 6. In Fig. 2, we

illustrate the behavior of Eq4) for typical values of6 by ~ 2+ 6L1/2J 2\ L (202 ®)
considering, for simplicityD(t)=const. - -uee)| T
From the probability densityp(x,t), given in Eq.(3), we 2\, 2+6

can obtain the FPT distribution with absorbing boundaries.

For simplicity, we considep(x)=48(x—X%,) and use the fol-

lowing expression2,9]:

d L
Ft)y=- d_tj dx p(x,t).
0

Substituting Eq(3) into Eg. (5), we obtain the FPT distribu-

tion for the system governed by E@.) as follows:

2
)\n‘J(1+e)/(2+9)

2\,
ngw)/z
2+0

F() =
L0+2 n=1

Jz+2002+6)

t
xexp(—xﬁj dt’D(t’))
0

(2+06)
X

An

1+6
20T

2+60

(2+06)

2\,

L(2+0)/2

2+40

(1+6)/(2+6)

(see Fig. 3 From this expression, we can obtain the MFPT

(5) related to this process fap(t)=const, as follows:

o L 1+6
_ _ X (L=Xo)
T= JO dtfo dxpx) == (7)

For the middle of the intervdlo,L], i.e.,xo=L/2, the above
result yields7=[L?/(8D)]?*?2[2(2D)??/(2+6)]. We note
that the MFPT related to the systdf) is not invariant under
translation ofx (in statistical sengedue to the diffusion co-
efficient which depends on the positian\We now consider
the MFPT on the interval$mL,(m+1)L], wherem is an
integer, with absorbing boundaries. The solution is given by

~ L2+0(2m+ l)1+0[(m+ 1)1+0+ m1+(9]
M7 D222 + O)[(m+ 1)1 — m+)
~ L2+9[(m+ 1)m]1+0
D2+ 0)[(m+ 1)+ — mt*7]’

(8

with Xo=(2m+1)L/2 put in the middle of the intervals. In
fact, the above results give different results for different val-
ues ofm. For m=0, we recover the resulf). For =0, we
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recover the standard resdit=L2/8D which is independent IV. SUMMARY AND CONCLUSIONS
of the value ofm.

Now, let us extend the above results for-x, i.e., a In summary, we have investigated some solutions of Eq.

semi-infinite interval. In this direction, the boundary condi- (1) and the FPT for a system governed by the usual diffusion
tion is given byp(0,t)=p(e,t)=0. For the initial condition, equation whose diffusion coefficient is space and/or time de-

we employp(x,0)=p(x). By using these considerations, we pendeqt_. We ha}ve obtained an analytic_al s_olut.ion fqr_the
can show that the probability distribution is given by probability density and for the FPT distribution in a finite
interval [0,L] and a semi-infinite interval with absorbing
boundaries. Indeed, the determination of analytical solutions
for a diffusion equation and, consequently, to the FPT distri-

p(x,t) f dx"p(x")G(x,X',t),
° bution is important to the study of diffusion processes due to

(xx) (140072 2(xx) (24012 the fa_ct that the system_s can be analyzed poncisely. In_ this
GXX' 1) = "l (19240 — direction, the study of diffusion processes with the diffusion
(2+0)t (2+0)7t coefficientD(x,t) =D(t)|x|~? is significant to both theoretical
e O 202 + )% 9) and experimental physics due to the fact that it can be useful

to describe diverse physical processes such as diffusion in

wheret=[tdt'D(t') and|,(x) is the modified Bessel func- Systems with porous medid3,10,12,2] We should men-
tion. tion that despite the singular nature of the diffusion coeffi-

To obtain the FPT distribution from the above equationcient atx=0, all the quantities obtained in this work are well
we apply Eq.(5) with, for simplicity, p(x’)=8(x'—x,) and behayed. Other aspects related to Hqg.have been consid-
D(t)=const. Thus, we have that ered in Ref[22].

Xéw e—xg*"/D(z + 0%

tF< - 0) [(2 +6)?Dt]1+0/@+0)

2+0 We thank Fundap Araucaria(Brazilian agencyfor par-
(see Fig. 4. tial financial support.

F(t) = (10)
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