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We investigate the solutions and the first passage time for anomalous diffusion processes governed by the
usual diffusion equation. We consider a space- and time-dependent diffusion coefficient and the presence of
absorbing boundaries. We obtain analytical results for the probability distribution and the first passage time
distribution for finite and semi-infinite intervals. In addition, we compare our results for the first passage time
distribution with the one obtained by the usual diffusion equation with constant diffusion coefficient.
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I. INTRODUCTION

Anomalous diffusion is a ubiquitous phenomenon in na-
ture and it appears in several contexts related to physics,
chemistry, and biology. The processes associated with
anomalous diffusion are investigated, in general, by using the
Langevin equation or differential equations for the probabil-
ity densityrsx,td. Nowadays, there are several approaches at
our disposal to describe these processes. For instance, the
well-known cases are the Langevin equation and the corre-
sponding Fokker-Planck equation, and the master equation.
The other ones we could mention are the generalized Lange-
vin equationsf1g, the generalized Fokker-Planck equation
with memory effect f2g, generalized thermostatisticsf3g,
generalized master equationsf4g, continuous time random
walk modelsf5g, and fractional equationsf6g. In connection
to these approaches, the investigation of a stochastic process,
such as anomalous diffusion, is also associated with the
mean first passage timesMFPTd. The MFPT is defined as the
time T when a process, starting from a given point, reaches a
predetermined level for the first time. Examples of the MFPT
are the escape time from a random potential, intervals be-
tween neural spikesf7g, and fatigue failuref8g. In this con-
text, the knowledge of the first passage timesFPTd distribu-
tion Fstd is also essential. However, in only a few cases one
has explicit analytical expressions for the FPT distribution,
as was pointed out in Ref. 9. In this direction, our focus on
this work is to analyze the MFPT, the FPT distribution, and
the solutions related to the following diffusion equation:

]

] t
rsx,td =

]

] x
HDst,xd

]

] x
rsx,tdJ , s1d

where the diffusion coefficient is given byDst ,xd
=Dstduxu−u. Note that Eq.s1d has as particular cases several
situations present in the literature and it brings further as-
pects to explore, for example, physical systems whose dy-
namic aspects are governed by fractal-like structure and non-
Markovian processes. The above equation has been applied
to investigate turbulencef10,11g, fast electrons in a hot
plasma in the presence of a dc electric fieldf12g, and diffu-
sion on fractalsf13g.

The plan of this work is to investigate Eq.s1d. In Sec. II,
we present the solutions of Eq.s1d with natural boundary
conditions and diffusion coefficient given byDst ,xd
=Dstduxu−u. We analyze the mean squared displacement of

these processes with different forms forDstd. In Sec. III, we
investigate Eq.s1d subjected to the boundary condition
rs0,td=rsL ,td=0 and the initial conditionrsx,0d= r̄sxd. We
also analyze this result by extending it to a semi-infinite
interval, i.e.,L→`. Furthermore, we analyze the FPT distri-
bution and the MFPT. Next in Sec. IV, we present our con-
clusion by giving a discussion about our results.

II. DIFFUSION EQUATION WITH NATURAL
BOUNDARY CONDITIONS

The diffusion equations1d with variable diffusion coeffi-
cient in space and/or in time has been considered by several
authors. Richardson considered, by empirical argument, the
spatial diffusion coefficient given byDst ,xd,uxu−u swith u
=−4/3d in order to study turbulent diffusivityf10g, whereas
Batchelor suggestedDst ,xd, t2 for the same problemf14g.
In a later step, Okubof15g and Hentschel and Procacciaf16g
sOHPd suggested mixed algebraic forms given byDst ,xd
, tauxu−u, with the initial conditionrs0,xd=dsxd. The solution
of Eq. s1d for Dst ,rd=KDstdr−u, in n dimensions with spheri-
cal symmetry, is given by

rsr, t̄d =
s2 + ud

nG„n/s2 + ud…F 1

Ks2 + ud2t̄
Gn/s2+ud

e−r2+u/ks2 + ud2t̄,

s2d

wheret̄=eDstddt. The corresponding mean squared displace-
ment iskr2l, t̄2/s2+ud. Note that the non-Gaussian solution of
Eq. s2d is due to the spatial diffusion coefficient. In particu-
lar, for the Batchelor modelsu=0d, the probability distribu-
tion has the Gaussian form. ForDstd= ta we recover the OHP

solution which yieldsrsr ,td~ t−3s1+ad/s2+ude−C2r2+u/t1+a
. In par-

ticular, for 2a−3u=4 one haskr2l, t3 which leads to the
same behavior of the Richardson and Batchelor models. One
can see that the above three models are linear in the logarith-
mic scale. To deviate from the linear behavior one can con-
sider, for example,Dstd,dfs1+atbdc/ s1+gtqdhg /dt. For this
last case,kr2l is shown in Fig. 1. Fort small kr2l is domi-
nated by the initial distance, and for large time the rate of
kr2l is less than that of the intermediate time. These behav-
iors seem to be verified in turbulent processesf11g.
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III. DIFFUSION EQUATION AND FPT DISTRIBUTION

We start this section by regarding a particle diffusing in an
interval f0,Lg, whose dynamics is governed by Eq.s1d, sub-
ject to absorbing boundaries, i.e.,rs0,td=rsL ,td=0 and the
initial condition given byrsx,0d= r̄sxd. It is interesting to
note that this kind of boundary condition may be useful to
investigate stratified porous mediaf17g and to model photo-
conductivity in the amorphous semiconductor As2Se3 and the
organic compound TNF-Pf18g. In order to solve Eq.s1d,
subject to the conditions indicated above, the resolution
method employed here is just the Green function method
f19g. Thus, the solution obtained for Eq.s1d is given by

rsx,td =E
0

L

dx0Gsx,x0;tdr̄sx0d,

Gsx,x0;td =
u + 2

Lu+2
o
n=1

`

sx0xds1+ud/2Js1+ud/s2+ud1 2ln

2 + u

x0
s2+ud/22

5Js3+2ud/s2+ud1 2ln

2 + u

Ls2+ud/226
2

3 Js1+ud/s2+ud1 2ln

2 + u

xs2+ud/22expS−ln
2E

0

t

dt8Dst8dD
s3d

for an arbitrary initial condition, whereG is the Green func-

tion associated with the initial condition andln are deter-
mined by the equationJs1+ud/s2+udhf2l / s2+udgLs2+ud/2j=0,
i.e., they correspond to the zeros of the Bessel function. No-
tice that the presence of the Bessel functions in Eq.s3d is due
to the spatial dependence of the diffusion coefficient. In par-
ticular, this difference between Eq.s3d and the standard so-
lution with constant diffusion coefficient is related to the
changes obtained for the probability of a jump length due to
the spatial time dependence of the diffusion coefficient. In
order to show the differences between the standard case and
this case we may analyze the second moment obtained from
Eq. s3d. It is given by

kx2l =
s2 + ud1/s2+udL2x0

s1+ud/2

s4 + udG13 + 2u

2 + u
2

3o
n=1

`

ln
s1+ud/s2+udJs1+ud/s2+ud1 2ln

2 + u

x0
s2+ud/22

5Js3+2ud/s2+ud1 2ln

2 + u

Ls2+ud/226
2

31F214 + u

2 + u

;
3 + 2u

2 + u

,
6 + 2u

2 + u

;
− L2+uln

2

s2 + ud2 2
3expS− ln

2E
0

t

dt DstdD s4d

FIG. 2. We show the behavior ofkx2l versust, in arbitrary units,
for typical values ofu by using, for simplicity,x0=3, L=6, and
Dstd=1.

FIG. 1. Plot ofkr2l as a function oft, in arbitrary units, with the
diffusion coefficientDsr ,td, r−udfs1+atbdc/ s1+gtqdhg /dt. The pa-
rameters area=0.4, b=2.3, 2c/ s2+ud=1.36,g=7.7310−8, q=5.4,
and 2h/ s2+ud=0.33.
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for the initial condition rsx,0d=dsx−x0d, where

1F2sa1;b1,b2;xd is a hypergeometric functionf20g. Note
that the above equation can exhibit several kinds of behav-
iors depending on the choices forDstd andu. In Fig. 2, we
illustrate the behavior of Eq.s4d for typical values ofu by
considering, for simplicity,Dstd=const.

From the probability densityrsx,td, given in Eq.s3d, we
can obtain the FPT distribution with absorbing boundaries.
For simplicity, we considerr̄sxd=dsx−x0d and use the fol-
lowing expressionf2,9g:

Fstd = −
d

dt
E

0

L

dx rsx,td. s5d

Substituting Eq.s3d into Eq.s5d, we obtain the FPT distribu-
tion for the system governed by Eq.s1d as follows:

Fstd =
2Dstdx0

s1+ud/2

Lu+2
o
n=1

`

ln
2Js1+ud/s2+ud1 2ln

2 + u

x0
s2+ud/22

5Js3+2ud/s2+ud1 2ln

2 + u

Ls2+ud/226
2

3expS− ln
2E

0

t

dt8Dst8dD
33

s2 + ud2

2ln
2G11 + u

2 + u
2
1 ln

s2 + ud
2

s1+ud/s2+ud

−
2 + u

2ln

L1/2J−1/s2+ud1 2ln

2 + u

Ls2+ud/224 s6d

ssee Fig. 3d. From this expression, we can obtain the MFPT
related to this process forDstd=const, as follows:

T =E
0

`

dtE
0

L

dx rsx,td =
x0

1+usL − x0d
s2 + udD . s7d

For the middle of the intervalf0,Lg, i.e., x0=L /2, the above
result yieldsT=fL2/ s8Ddgs2+ud/2f2s2Ddu/2/ s2+udg. We note
that the MFPT related to the systems1d is not invariant under
translation ofx sin statistical sensed due to the diffusion co-
efficient which depends on the positionx. We now consider
the MFPT on the intervalsfmL,sm+1dLg, where m is an
integer, with absorbing boundaries. The solution is given by

Tm =
L2+us2m+ 1d1+ufsm+ 1d1+u + m1+ug
D22+us2 + udfsm+ 1d1+u − m1+ug

−
L2+ufsm+ 1dmg1+u

Ds2 + udfsm+ 1d1+u − m1+ug
, s8d

with x0=s2m+1dL /2 put in the middle of the intervals. In
fact, the above results give different results for different val-
ues ofm. For m=0, we recover the results7d. For u=0, we

FIG. 3. We show the behavior ofFstd versust, in arbitrary units,
for typical values ofu by using, for simplicity,x0=3, L=6, and
Dstd=1.

FIG. 4. We show the behavior ofFstd versust, in arbitrary units,
for typical values ofu by considering, for simplicity,x0=1 and
D=1.
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recover the standard resultT=L2/8D which is independent
of the value ofm.

Now, let us extend the above results forL→`, i.e., a
semi-infinite interval. In this direction, the boundary condi-
tion is given byrs0,td=rs` ,td=0. For the initial condition,
we employrsx,0d= r̃sxd. By using these considerations, we
can show that the probability distribution is given by

rsx,tdE
0

`

dx8r̃sx8dGsx,x8,td,

Gsx,x8,td =
sxx8ds1+ud/2

s2 + udt̄
I s1+ud/s2+udS2sxx8ds2+ud/2

s2 + ud2t̄
D

3e−sx2+u+x82+ud/s2 + ud2t̄, s9d

where t̄=e0
t dt8Dst8d and Insxd is the modified Bessel func-

tion.
To obtain the FPT distribution from the above equation

we apply Eq.s5d with, for simplicity, r̃sx8d=dsx8−x0d and
Dstd=const. Thus, we have that

Fstd =
x0

1+u

tGS1 + u

2 + u
D

e−x0
2+u/Ds2 + ud2t

fs2 + ud2Dtgs1+ud/s2+ud s10d

ssee Fig. 4d.

IV. SUMMARY AND CONCLUSIONS

In summary, we have investigated some solutions of Eq.
s1d and the FPT for a system governed by the usual diffusion
equation whose diffusion coefficient is space and/or time de-
pendent. We have obtained an analytical solution for the
probability density and for the FPT distribution in a finite
interval f0,Lg and a semi-infinite interval with absorbing
boundaries. Indeed, the determination of analytical solutions
for a diffusion equation and, consequently, to the FPT distri-
bution is important to the study of diffusion processes due to
the fact that the systems can be analyzed concisely. In this
direction, the study of diffusion processes with the diffusion
coefficientDsx,td=Dstduxu−u is significant to both theoretical
and experimental physics due to the fact that it can be useful
to describe diverse physical processes such as diffusion in
systems with porous mediaf13,10,12,21g. We should men-
tion that despite the singular nature of the diffusion coeffi-
cient atx=0, all the quantities obtained in this work are well
behaved. Other aspects related to Eq.s1d have been consid-
ered in Ref.f22g.
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